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Abstract 

The H-erie pathway has not been detected for the bismuth(Ill) chloride-catalyzed Mukaiyama-aldol reaction involving silyl enol ethers 
and aldehydes. The silatropic ene-like process is the only mechanism observed, even with the weakly reactive I-(irimethyisilyioxy) 
cyclohexene. However, trimerization of an aliphatic aldehyde can occur. 
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In previous studies, we have shown that ailylsilanes 
or germanes can give erie reactions [I-8]. While ther- 
mal reactions with alkenes or activated hetero°enophiles 
imply a H-ene reaction mechanism, the c~mdyzed reac- 
lions involve migration of the silicon or germ:miut,~ 
atom. in some cases, the two mechanisms have been 
observed [2~o4]. In the condensation between an 
enoxysilane and a carbonyl compound (Mukaiyama-al- 
dol reaction) [5], recent results have shown the possibili- 
ties of Hene  and silatropic-ene pathways [6]. 

It has been pointed out that catalytic amounts of 
Bi(lll) chloride [7], especially when associated with 
metallic iodides [8], are very efficient in this reaction. 
We report here a possible H-ene reaction competitive 
with the Mukaiyama process using such catalysts. 

At first, in order to know if BiCI 3 is suitable to 
catalyze classical H-ene reactions, its catalytic activity 
was tested for the cyclization of ( + )-citronellal (1), and 
the reaction between (-)-/3-pinene (2) and chloral. At 
room temperature, in benzene or dichloromethane solu- 
tion, the cyclization ef I was completed in a few hours 
using BiCi3 in 2% moi, or in a few minutes with 5%. 
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On a 0.05 mol. scale, after distillation, a 65% yield of 
the pulegol di~stereoisomers was obtained in which 
( - )°isopulegol (3) was identified by I H NMR [9] as the 
main one (70%). Thus, the catalytic power of BiCI ~ and 
the reaction stereoselectivity are similar to, or better 
than, those obtained with the usual catalyst present in 
10% tool [10]. 

Concerning the ene-reaction between chloral and 2, 
the influence of a range of Lewis acids has been 
examined, showing that the polymerization of the tero 
pene is an important problem [11]. 

At room temperature, with 2% tool. of BiCI~, in 
CH2CI2/Et20 (9: 1), an equimolar mixture of 2 and 
chloral gave the H-ene adduct 4, isolated by chromatog- 
raphy in 49% yield [12]. We observed that the forma- 
tion of the (11R)-diastereoisomer of 4 (64%) is slightly 
favoured, whereas most Lewis acids lead to the prefer- 
ential or exclusive (llS)-isomer [11]. In fact, from a 
stereochemic,'fl viewpoint, this BiCl3-catalyzed reaction 
resembles - the thermal uncatalyzed process [ I ! b, ! 3]. 

Such a H-ene-like process has also been observed in 
the catalyzed condensation of an aldehyde with a vinyl 
ether [ 14] or a silyl enol ether [6], especially in alkylalu- 
minium-catalyzed reactions involving long chain 
aliphatic aldehydes in nonpolar solvents. In the latter 
case, this mechanism competes with the Mukaiyama 
process, formally a sila-ene reaction, and the two mech- 
anisms give the same aldol after aqueous workup. 
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To see if the H-ene pathway is also observable in the 
bismuth chloride-catalyzed cross-aldol reaction, we 
studied the reaction between l o(trimethylsilyloxy) cy- 
clohexene 5 and butanal or heptanal (Eq. (!)). Due to 
the easy observation and separation of the silylated 
aldols before workup using this catalyst [8], the two 
paths (at and (b) were easy to distinguish. BiCI ~. 3Na! 
(5% reel) was used as catalyst. BiCI~ alone being 
inefficient for these reactions [7]. Moreover. there is a 
higher probability of observing an H°ene process with a 
substrate (such as 5) weakly reactive in the Mukaiyama 
condensation, 

For the reaction with butanal in CH~CI~ at room 
temperature, the Mukaiyama adduct (7, R ~ Pr) was 
obtained in 80% yield (Eq. (I), path b), while an H-ene 
adduct (6) (path a) was not detected. However, the 
formation of the aldehyde trimer 9 was observed (7 /9  
~ 88/12) [15,161. 

R y O y  r R = Pr (9), Hex (10) o.. o 
R 

In hexane, no cross°condensation occuned and only 
the trimerization of butanal was detected, Aldehyde 
trimerization has also been described in a study of the 
complexation of butanal with TiCl~ or SnCI4 [17], but 
surprisingly, to our knowledge, was not reported for the 
TiCl~ (or SnCI4)-catalyzed Mukaiyama reaction. It is 
important to note that for the selected substrat¢ 5, the 
ethylenic I H NMR signal (8 = 4,85 ppm) is superim- 

posed on a similar pattern from the ~H signal of the 
CHO group in 9 (8 = 4,81 ppm, triplet J = 4,5 Hz). 
The possible ene adduct 6 would also exhibit a similar 
signal as is also evident from the ene adduct between 5 
and methanal [6c]. However, the absence of an OH 
infrared absorption band excludes its formation, and the 
aldehyde trimer 9 was identified by a GC/MS analysis 
[15]. We have also observed the formation of 9 in the 
reaction between 5 and BiCI 3 alone. 

With heptanal, in CH 2CI2 under the same conditions, 
the reaction of 5 was slower and the products also 
consisted of the Mukaiyama adduct (7, R = Hex) in 
50% yield and the aldehyde trimer 10 (7 / l0 = 70/30). 
Taking into account this in situ trimerization of the 
aldehyde, we suggest for the silyl aldol condensation an 
alternative pathway involving the trimer as an interme- 
diate. However, no reaction was observed between 5 
and 9 under the usual conditions of the BiC! 3, 3Nal- 
catalysis. In the case of the reaction between 5 and a 
more reactive aldehyde, such as benzaldehyde, the 
Mukaiyama adduct was the sole product (7, R = Ph) 
(95% yield), without formation of the aldehyde trimer 
[8a.b]. 

Finally, with the reactive enoxysilane derived from 
acetophenone [Ph C(OSiMe~)= CH:, 11] the cross-al- 
doi reaction with butanal gave only the expected aldol 
adduct:: [Ph COCH:CHOHPr] in 95% .,ield [8], without 
formation of 9. 

We have shown that BiCI.~ is an efficient catalyst in 
carbonyl-ene reactions, and also in aldehyde trimeriza- 
tion. a subject still under consideration [18]. However, 
an Hocn¢ process was not detected in the BiCI~, 3Nalo 
calaly~ed Mukaiyamaoaldol condensation Ibr which a 
mechanistic study is currently in progtx'ss. 
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